1
0
Fork 0
Personal fork of the QMK keyboard firmware
Go to file
dragon788 6774167900 Command line programming not default, enable by reading quickstart and comments in Vagrantfile 2016-01-17 17:13:08 -06:00
converter ibm4704: Add keymap for Alps 102-key 2015-09-24 01:33:50 +09:00
keyboard Having media layer defined causes toggles to 'stick' rather than be momentary in my experience 2016-01-16 12:31:13 -06:00
quantum Add neo2 keymap and neo2 ergodox layout 2015-12-19 01:41:23 +01:00
teensy-sdk@19892c1968 quark 2015-05-02 23:00:47 -04:00
tmk_core Added note about avr-libc also being required at least for arch 2015-12-30 23:22:29 -06:00
.gitignore Adding Vagrantfile for easier compile environment setup 2016-01-03 22:21:30 -06:00
.gitmodules Remove core library and build files 2015-04-10 01:25:48 +09:00
QUICK_START.md Command line programming not default, enable by reading quickstart and comments in Vagrantfile 2016-01-17 17:13:08 -06:00
README.md Update README.md 2016-01-16 20:46:15 -06:00
TMK_README.md Make links work in TMK_README 2015-11-26 19:56:37 +01:00
Vagrantfile Command line programming not default, enable by reading quickstart and comments in Vagrantfile 2016-01-17 17:13:08 -06:00
avr_setup.sh Fixing Debian/Ubuntu updates to be completely non-interactive 2016-01-17 13:20:28 -06:00
new_project.sh new project script 2015-10-27 14:33:18 -04:00

README.md

Quantum MK Firmware

This is a keyboard firmware based on the tmk_keyboard firmware with some useful features for Atmel AVR controllers, and more specifically, the OLKB product line and the ErgoDox EZ keyboard.

QMK is developed and maintained by Jack Humbert of OLKB with contributions from the community, and of course, TMK.

This documentation is edited and maintained by Erez Zukerman of ErgoDox EZ. If you spot any typos or inaccuracies, please open an issue.

Important background info: TMK documentation

The documentation below explains QMK customizations and elaborates on some of the more useful features of TMK. To understand the base firmware, and especially what layers are and how they work, please see TMK_README.md.

Getting started

  • If you're looking to customize a keyboard that currently runs QMK or TMK , find your keyboard's directory under /keyboard/ and read the README file. This will get you all set up.
  • Read the QUICK_START.md if you want to hit the ground running with minimal fuss or you aren't a technical person and you just want to build the firmware with the least amount of hassle possible.
  • If you're looking to apply this firmware to an entirely new hardware project (a new kind of keyboard), you can create your own Quantum-based project by using ./new_project.sh <project_name>, which will create /keyboard/<project_name> with all the necessary components for a Quantum project.

You have access to a bunch of goodies! Check out the Makefile to enable/disable some of the features. Uncomment the # to enable them. Setting them to no does nothing and will only confuse future you.

BACKLIGHT_ENABLE = yes # Enable keyboard backlight functionality
MIDI_ENABLE = yes      # MIDI controls
# UNICODE_ENABLE = yes # Unicode support - this is commented out, just as an example. You have to use #, not //
BLUETOOTH_ENABLE = yes # Enable Bluetooth with the Adafruit EZ-Key HID

Quick aliases to common actions

Your keymap can include shortcuts to common operations (called "function actions" in tmk).

Switching and toggling layers

MO(layer) - momentary switch to layer. As soon as you let go of the key, the layer is deactivated and you pop back out to the previous layer. When you apply this to a key, that same key must be set as KC_TRNS on the destination layer. Otherwise, you won't make it back to the original layer when you release the key (and you'll get a keycode sent). You can only switch to layers above your current layer. If you're on layer 0 and you use MO(1), that will switch to layer 1 just fine. But if you include MO(3) on layer 5, that won't do anything for you -- because layer 3 is lower than layer 5 on the stack.

LT(layer, kc) - momentary switch to layer when held, and kc when tapped. Like MO(), this only works upwards in the layer stack (layer must be higher than the current layer).

TG(layer) - toggles a layer on or off. As with MO(), you should set this key as KC_TRNS in the destination layer so that tapping it again actually toggles back to the original layer. Only works upwards in the layer stack.

Fun with modifier keys

  • LSFT(kc) - applies left Shift to kc (keycode) - S(kc) is an alias
  • RSFT(kc) - applies right Shift to kc
  • LCTL(kc) - applies left Control to kc
  • RCTL(kc) - applies right Control to kc
  • LALT(kc) - applies left Alt to kc
  • RALT(kc) - applies right Alt to kc
  • LGUI(kc) - applies left GUI (command/win) to kc
  • RGUI(kc) - applies right GUI (command/win) to kc
  • HYPR(kc) - applies Hyper (all modifiers) to kc
  • MEH(kc) - applies Meh (all modifiers except Win/Cmd) to kc

You can also chain these, like this:

LALT(LCTL(KC_DEL)) -- this makes a key that sends Alt, Control, and Delete in a single keypress.

The following shortcuts automatically add LSFT() to keycodes to get commonly used symbols. Their long names are also available and documented in /quantum/keymap_common.h.

KC_TILD  ~
KC_EXLM  !
KC_AT    @
KC_HASH  #
KC_DLR   $
KC_PERC  %
KC_CIRC  ^
KC_AMPR  &
KC_ASTR  *
KC_LPRN  (
KC_RPRN  )
KC_UNDS  _
KC_PLUS  +
KC_LCBR  {
KC_RCBR  }
KC_PIPE  |
KC_COLN  :

MT(mod, kc) - is mod (modifier key - MOD_LCTL, MOD_LSFT) when held, and kc when tapped. In other words, you can have a key that sends Esc (or the letter O or whatever) when you tap it, but works as a Control key or a Shift key when you hold it down.

These are the values you can use for the mod in MT() (right-hand modifiers are not available):

  • MOD_LCTL
  • MOD_LSFT
  • MOD_LALT
  • MOD_LGUI

These can also be combined like MOD_LCTL | MOD_LSFT e.g. MT(MOD_LCTL | MOD_LSFT, KC_ESC) which would activate Control and Shift when held, and send Escape when tapped.

We've added shortcuts to make common modifier/tap (mod-tap) mappings more compact:

  • CTL_T(kc) - is LCTL when held and kc when tapped
  • SFT_T(kc) - is LSFT when held and kc when tapped
  • ALT_T(kc) - is LALT when held and kc when tapped
  • GUI_T(kc) - is LGUI when held and kc when tapped
  • ALL_T(kc) - is Hyper (all mods) when held and kc when tapped. To read more about what you can do with a Hyper key, see this blog post by Brett Terpstra
  • MEH_T(kc) - is like Hyper, but not as cool -- does not include the Cmd/Win key, so just sends Alt+Ctrl+Shift.

Temporarily setting the default layer

DF(layer) - sets default layer to layer. The default layer is the one at the "bottom" of the layer stack - the ultimate fallback layer. This currently does not persist over power loss. When you plug the keyboard back in, layer 0 will always be the default. It is theoretically possible to work around that, but that's not what DF does.

Remember: These are just aliases

These functions work the same way that their ACTION_* functions do - they're just quick aliases. To dig into all of the tmk ACTION_* functions, please see the TMK documentation.

Instead of using FNx when defining ACTION_* functions, you can use F(x) - the benefit here is being able to use more than 32 function actions (up to 4096), if you happen to need them.

Macro shortcuts: Send a whole string when pressing just one key

Instead of using the ACTION_MACRO function, you can simply use M(n) to access macro n - n will get passed into the action_get_macro as the id, and you can use a switch statement to trigger it. This gets called on the keydown and keyup, so you'll need to use an if statement testing record->event.pressed (see keymap_default.c).

const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) // this is the function signature -- just copy/paste it into your keymap file as it is.
{
  switch(id) {
    case 0: // this would trigger when you hit a key mapped as M(0)
      if (record->event.pressed) {
        return MACRO( I(255), T(H), T(E), T(L), T(L), W(255), T(O), END  ); // this sends the string 'hello' when the macro executes
      } 
      break;
  }
  return MACRO_NONE;
};

A macro can include the following commands:

  • I() change interval of stroke in milliseconds.
  • D() press key.
  • U() release key.
  • T() type key(press and release).
  • W() wait (milliseconds).
  • END end mark.

So above you can see the stroke interval changed to 255ms between each keystroke, then a bunch of keys being typed, waits a while, then the macro ends.

Note: Using macros to have your keyboard send passwords for you is a bad idea.

Additional keycode aliases for software-implemented layouts (Colemak, Dvorak, etc)

Everything is assuming you're in Qwerty (in software) by default, but there is built-in support for using a Colemak or Dvorak layout by including this at the top of your keymap:

#include "keymap_.h"

Where is "colemak" or "dvorak". After including this line, you will get access to:

  • CM_* for all of the Colemak-equivalent characters
  • DV_* for all of the Dvorak-equivalent characters

These implementations assume you're using Colemak or Dvorak on your OS, not on your keyboard - this is referred to as a software-implemented layout. If your computer is in Qwerty and your keymap is in Colemak or Dvorak, this is referred to as a firmware-implemented layout, and you won't need these features.

To give an example, if you're using software-implemented Colemak, and want to get an F, you would use CM_F - KC_F under these same circumstances would result in T.

Additional language support

In quantum/keymap_extras/, you'll see various language files - these work the same way as the alternative layout ones do. Most are defined by their two letter country/language code followed by an underscore and a 4-letter abbreviation of its name. FR_UGRV which will result in a ù when using a software-implemented AZERTY layout. It's currently difficult to send such characters in just the firmware (but it's being worked on - see Unicode support).

Unicode support

You can currently send 4 hex digits with your OS-specific modifier key (RALT for OSX with the "Unicode Hex Input" layout) - this is currently limited to supporting one OS at a time, and requires a recompile for switching. 8 digit hex codes are being worked on. The keycode function is UC(n), where n is a 4 digit hexidecimal. Enable from the Makefile.

Other firmware shortcut keycodes

  • RESET - puts the MCU in DFU mode for flashing new firmware (with make dfu)
  • DEBUG - the firmware into debug mode - you'll need hid_listen to see things
  • BL_ON - turns the backlight on
  • BL_OFF - turns the backlight off
  • BL_<n> - sets the backlight to level n
  • BL_INC - increments the backlight level by one
  • BL_DEC - decrements the backlight level by one
  • BL_TOGG - toggles the backlight
  • BL_STEP - steps through the backlight levels

Enable the backlight from the Makefile.

MIDI functionalty

This is still a WIP, but check out quantum/keymap_midi.c to see what's happening. Enable from the Makefile.

Bluetooth functionality

This requires some hardware changes, but can be enabled via the Makefile. The firmware will still output characters via USB, so be aware of this when charging via a computer. It would make sense to have a switch on the Bluefruit to turn it off at will.