1
0
Fork 0

Simplified processing in led_controller; more control at user level.

This commit is contained in:
jpetermans 2017-04-26 23:12:25 -07:00
parent 046f1baf30
commit b3945c103c
2 changed files with 123 additions and 96 deletions

View File

@ -25,6 +25,8 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "hal.h" #include "hal.h"
#include "print.h" #include "print.h"
#include "led.h" #include "led.h"
#include "action_layer.h"
#include "host.h"
#include "led_controller.h" #include "led_controller.h"
@ -70,7 +72,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define BREATHE_LED_ADDRESS CAPS_LOCK_LED_ADDRESS #define BREATHE_LED_ADDRESS CAPS_LOCK_LED_ADDRESS
#endif #endif
#define DEBUG_ENABLED 1 #define DEBUG_ENABLED 0
/* ================= /* =================
* ChibiOS I2C setup * ChibiOS I2C setup
@ -172,12 +174,12 @@ static THD_FUNCTION(LEDthread, arg) {
(void)arg; (void)arg;
chRegSetThreadName("LEDthread"); chRegSetThreadName("LEDthread");
uint8_t i, j, page; uint8_t i;
uint8_t control_register_word[2] = {0};//2 bytes: register address, byte to write uint8_t control_register_word[2] = {0};//2 bytes: register address, byte to write
uint8_t led_control_reg[0x13] = {0};//led control register start address + 0x12 bytes uint8_t led_control_reg[0x13] = {0};//led control register start address + 0x12 bytes
//persistent status variables //persistent status variables
uint8_t backlight_status, pwm_step_status, page_status; uint8_t pwm_step_status, page_status;
//mailbox variables //mailbox variables
uint8_t temp, msg_type, msg_led; uint8_t temp, msg_type, msg_led;
@ -189,7 +191,6 @@ static THD_FUNCTION(LEDthread, arg) {
*/ */
// initialize persistent variables // initialize persistent variables
backlight_status = 0; //start backlight off
pwm_step_status = 4; //full brightness pwm_step_status = 4; //full brightness
page_status = 0; //start frame 0 (all off/on) page_status = 0; //start frame 0 (all off/on)
@ -202,64 +203,59 @@ page_status = 0; //start frame 0 (all off/on)
msg_led = (msg) & 0xFF; //second byte is action information msg_led = (msg) & 0xFF; //second byte is action information
xprintf("--------------------\n"); xprintf("--------------------\n");
chThdSleepMilliseconds(10);
xprintf("mailbox fetch\nmsg: %X\n", msg); xprintf("mailbox fetch\nmsg: %X\n", msg);
chThdSleepMilliseconds(10);
xprintf("type: %X - led: %X\n", msg_type, msg_led); xprintf("type: %X - led: %X\n", msg_type, msg_led);
chThdSleepMilliseconds(10);
switch (msg_type){ switch (msg_type){
case KEY_LIGHT: case KEY_LIGHT:
//TODO: lighting key led on keypress //TODO: lighting key led on keypress
break; break;
//TODO: custom page that is written using keypresses
//TODO: BLINK_ON/OFF_LED
case OFF_LED: case OFF_LED:
//on/off/toggle single led, msg_led = row/col of led //on/off/toggle single led, msg_led = row/col of led
xprintf("OFF_LED\n"); xprintf("OFF_LED\n");
chThdSleepMilliseconds(10);
set_led_bit(7, control_register_word, msg_led, 0); set_led_bit(7, control_register_word, msg_led, 0);
is31_write_data (7, control_register_word, 0x02); is31_write_data (7, control_register_word, 0x02);
if (page_status < 7) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7);
}
page_status = 7;
break; break;
case ON_LED: case ON_LED:
xprintf("ON_LED\n"); xprintf("ON_LED\n");
chThdSleepMilliseconds(10);
set_led_bit(7, control_register_word, msg_led, 1); set_led_bit(7, control_register_word, msg_led, 1);
is31_write_data (7, control_register_word, 0x02); is31_write_data (7, control_register_word, 0x02);
if (page_status < 7) {//check current led page to prevent double blink
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7);
}
page_status = 7;
break; break;
case TOGGLE_LED: case TOGGLE_LED:
xprintf("TOGGLE_LED\n"); xprintf("TOGGLE_LED\n");
chThdSleepMilliseconds(10);
set_led_bit(7, control_register_word, msg_led, 2); set_led_bit(7, control_register_word, msg_led, 2);
is31_write_data (7, control_register_word, 0x02); is31_write_data (7, control_register_word, 0x02);
if (page_status > 7) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7);
}
page_status = 7;
break; break;
case TOGGLE_ALL: case TOGGLE_ALL:
xprintf("TOGGLE_ALL\n"); xprintf("TOGGLE_ALL\n");
chThdSleepMilliseconds(10);
//msg_led = unused //msg_led = unused
is31_read_register(0, 0x00, &temp);//if first byte is on, then toggle frame 0 off is31_read_register(0, 0x00, &temp);//if first byte is on, then toggle frame 0 off
led_control_reg[0] = 0; led_control_reg[0] = 0;
if (temp==0 || page_status > 0) { if (temp==0 || page_status > 0) {
xprintf("all leds on"); xprintf("all leds on");
chThdSleepMilliseconds(10);
__builtin_memcpy(led_control_reg+1, all_on_leds_mask, 0x12); __builtin_memcpy(led_control_reg+1, all_on_leds_mask, 0x12);
} else { } else {
xprintf("all leds off"); xprintf("all leds off");
chThdSleepMilliseconds(10);
__builtin_memset(led_control_reg+1, 0, 0x12); __builtin_memset(led_control_reg+1, 0, 0x12);
} }
is31_write_data(0, led_control_reg, 0x13); is31_write_data(0, led_control_reg, 0x13);
if (page_status > 0) { if (page_status > 0) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 0); is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 0);
} }
@ -276,30 +272,46 @@ page_status = 0; //start frame 0 (all off/on)
break; break;
case TOGGLE_BACKLIGHT: case TOGGLE_BACKLIGHT:
//msg_led = unused //msg_led = on/off
//TODO: need to test tracking of active layer with layer_state from qmk
//TODO: this code still assumes on/off frame 0/1, combine this with
//toggle_all with 0,1,2 msg_leds for off/on/toggle-current?
xprintf("TOGGLE_BACKLIGHT\n"); xprintf("TOGGLE_BACKLIGHT\n");
backlight_status ^= 1; chThdSleepMilliseconds(10);
is31_read_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, &temp);
page_status = temp;
page = backlight_status == 0 ? 0 : page_status; //populate the 9 byte rows to be written to each pin, first byte is register (pin) address
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, page); if (msg_led == 1) {
__builtin_memset(pwm_register_array+1, pwm_levels[pwm_step_status], 8);
} else {
__builtin_memset(pwm_register_array+1, 0, 8);
}
for(i=0; i<8; i++) {
//first byte is register address, every 0x10 9 bytes is A-register pwm pins
pwm_register_array[0] = 0x24 + (i * 0x10);
is31_write_data(0,pwm_register_array,9);
}
break; break;
case TOGGLE_PAGE_LEDS://show single layer indicator or full map of layer case DISPLAY_PAGE://show single layer indicator or full map of layer
//msg_led = page to toggle on //msg_led = page to toggle on
xprintf("TOGGLE_LAYER_LEDS\n"); xprintf("DISPLAY_PAGE\n");
is31_read_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, &temp); chThdSleepMilliseconds(10);
if (page_status != msg_led) {
if(temp == msg_led) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7);
page_status = 7;
} else {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, msg_led); is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, msg_led);
page_status = msg_led; }
page_status = msg_led;
break;
case RESET_PAGE:
//led_msg = page to reset
led_control_reg[0] = 0;
__builtin_memset(led_control_reg+1, 0, 0x12);
is31_write_data(msg_led, led_control_reg, 0x13);
//maintain lock leds
if (host_keyboard_leds() & (1<<USB_LED_NUM_LOCK)) {
set_lock_leds(USB_LED_NUM_LOCK, 1);
}
if (host_keyboard_leds() & (1<<USB_LED_CAPS_LOCK)) {
set_lock_leds(USB_LED_CAPS_LOCK, 1);
} }
break; break;
@ -313,10 +325,12 @@ page_status = 0; //start frame 0 (all off/on)
set_lock_leds(USB_LED_CAPS_LOCK, msg_led); set_lock_leds(USB_LED_CAPS_LOCK, msg_led);
break; break;
//TODO: MODE_BREATH
case MODE_BREATH: case MODE_BREATH:
break; break;
case STEP_BRIGHTNESS: case STEP_BRIGHTNESS:
xprintf("TOGGLE_BACKLIGHT\n"); xprintf("TOGGLE_BACKLIGHT\n");
chThdSleepMilliseconds(10);
//led_msg = step pwm up or down //led_msg = step pwm up or down
switch (msg_led) { switch (msg_led) {
case 0: case 0:
@ -336,66 +350,70 @@ page_status = 0; //start frame 0 (all off/on)
break; break;
} }
//populate the 9 byte rows to be written to each pin, first byte is register (pin) address //populate 8 byte rows to write on each pin
__builtin_memset(pwm_register_array+1, pwm_levels[pwm_step_status], 8); //first byte is register address, every 0x10 9 bytes are A-register pwm pins
__builtin_memset(pwm_register_array+1, pwm_levels[pwm_step_status], 8);
for(i=0; i<8; i++) { for(i=0; i<8; i++) {
//first byte is register address, every 0x10 9 bytes is A-register pwm pins pwm_register_array[0] = 0x24 + (i * 0x10);
pwm_register_array[0] = 0x24 + (i * 0x10); is31_write_data(0,pwm_register_array,9);
is31_write_data(0,pwm_register_array,9); }
}
break; break;
/* case LED_MSG_SLEEP_LED_ON: /* case LED_MSG_SLEEP_LED_ON:
// save current settings // save current settings
is31_read_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, &save_page); is31_read_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, &save_page);
is31_read_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL1, &save_breath1); is31_read_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL1, &save_breath1);
is31_read_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL2, &save_breath2); is31_read_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL2, &save_breath2);
// use pages 7 and 8 for (hardware) breathing (assuming they're empty) // use pages 7 and 8 for (hardware) breathing (assuming they're empty)
is31_write_register(6, BREATHE_LED_ADDRESS, 0xFF); is31_write_register(6, BREATHE_LED_ADDRESS, 0xFF);
is31_write_register(7, BREATHE_LED_ADDRESS, 0x00); is31_write_register(7, BREATHE_LED_ADDRESS, 0x00);
is31_write_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL1, (6<<4)|6); is31_write_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL1, (6<<4)|6);
is31_write_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL2, IS31_REG_BREATHCTRL2_ENABLE|3); is31_write_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL2, IS31_REG_BREATHCTRL2_ENABLE|3);
retval = MSG_TIMEOUT; retval = MSG_TIMEOUT;
temp = 6; temp = 6;
while(retval == MSG_TIMEOUT) { while(retval == MSG_TIMEOUT) {
// switch to the other page // switch to the other page
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, temp); is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, temp);
temp = (temp == 6 ? 7 : 6); temp = (temp == 6 ? 7 : 6);
// the times should be sufficiently long for IS31 to finish switching pages // the times should be sufficiently long for IS31 to finish switching pages
retval = chMBFetch(&led_mailbox, &msg, MS2ST(temp == 6 ? 4000 : 6000)); retval = chMBFetch(&led_mailbox, &msg, MS2ST(temp == 6 ? 4000 : 6000));
} }
// received a message (should be a wakeup), so restore previous state // received a message (should be a wakeup), so restore previous state
chThdSleepMilliseconds(3000); // need to wait until the page change finishes chThdSleepMilliseconds(3000); // need to wait until the page change finishes
// note: any other messages are queued // note: any other messages are queued
is31_write_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL1, save_breath1); is31_write_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL1, save_breath1);
is31_write_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL2, save_breath2); is31_write_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL2, save_breath2);
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, save_page); is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, save_page);
break; break;
case LED_MSG_SLEEP_LED_OFF: case LED_MSG_SLEEP_LED_OFF:
// should not get here; wakeup should be received in the branch above break; // should not get here; wakeup should be received in the branch above break;
break; break;
*/ */
xprintf("--------------------\n"); xprintf("--------------------\n");
chThdSleepMilliseconds(10);
} }
#ifdef DEBUG_ENABLED #if DEBUG_ENABLED
uint8_t j, page;
//debugging code - print full led/blink/pwm registers on each frame //debugging code - print full led/blink/pwm registers on each frame
xprintf("----layer state----: %X\n", layer_state);
for(i=0;i<8;i++) { for(i=0;i<8;i++) {
xprintf("page: %d", i); xprintf("page: %d", i);
chThdSleepMilliseconds(2);
for(j=0;j<0xB4;j++){ for(j=0;j<0xB4;j++){
is31_read_register(i,j,&temp); is31_read_register(i,j,&temp);
chThdSleepMilliseconds(1); chThdSleepMilliseconds(2);
xprintf("%02X, ", temp); xprintf("%02X, ", temp);
if(j % 9 == 0){ if(j % 9 == 0){
xprintf("\n", temp); xprintf("\n");
if(j % 18 ==0){ if(j % 18 ==0){
xprintf("register", temp); xprintf("register");
xprintf("\n", temp); xprintf("\n");
} }
} }
chThdSleepMilliseconds(1); chThdSleepMilliseconds(1);
} }
xprintf("\n", temp); xprintf("\n");
} }
#endif #endif
} }
@ -406,16 +424,21 @@ page_status = 0; //start frame 0 (all off/on)
* ============================== */ * ============================== */
void set_led_bit (uint8_t page, uint8_t *led_control_reg, uint8_t led_addr, uint8_t action) { void set_led_bit (uint8_t page, uint8_t *led_control_reg, uint8_t led_addr, uint8_t action) {
//returns 2 bytes led control register address and byte mask to write //returns 2 bytes led control register address and byte to write
uint8_t control_reg_addr, column_bit, column_byte, temp; uint8_t control_reg_addr, column_bit, column_byte, temp;
// //check for valid led address
if (led_addr < 0 || led_addr > 90 || led_addr % 10 > 8) {
xprintf("Invalid address: %d\n", led_addr);
return;
}
//first byte is led control register address 0x00 //first byte is led control register address 0x00
//msg_led tens column is pin#, ones column is bit position in 8-bit mask //msg_led tens column is pin#, ones column is bit position in 8-bit mask
control_reg_addr = ((led_addr / 10) % 10 - 1 ) * 0x02;// A-register is every other byte control_reg_addr = ((led_addr / 10) % 10 - 1 ) * 0x02;// A-register is every other byte
column_bit = 1<<(led_addr % 10 - 1); column_bit = 1<<(led_addr % 10 - 1);
is31_read_register(page,control_reg_addr,&temp);//need to maintain status of leds in this row (1 byte) is31_read_register(page, control_reg_addr, &temp);//maintain status of leds on this byte
column_byte = temp; column_byte = temp;
switch(action) { switch(action) {
@ -437,9 +460,11 @@ void set_led_bit (uint8_t page, uint8_t *led_control_reg, uint8_t led_addr, uint
void set_lock_leds(uint8_t lock_type, uint8_t led_on) { void set_lock_leds(uint8_t lock_type, uint8_t led_on) {
uint8_t page, led_addr, start, temp; uint8_t page, led_addr, start, temp;
uint8_t led_control_write[2] = {0}; uint8_t led_control_word[2] = {0};
//TODO: consolidate control register to top level array vs. three scattered around //TODO: this function call could send led address vs lock_type.
//however, the switch/case allows for additional steps, like audio, depending on type
led_addr = 0;
switch(lock_type) { switch(lock_type) {
case USB_LED_NUM_LOCK: case USB_LED_NUM_LOCK:
led_addr = NUM_LOCK_LED_ADDRESS; led_addr = NUM_LOCK_LED_ADDRESS;
@ -465,16 +490,18 @@ void set_lock_leds(uint8_t lock_type, uint8_t led_on) {
} }
//ignore frame0 if all leds are on or if option set in led_controller.h //ignore frame0 if all leds are on or if option set in led_controller.h
//TODO: blink of all leds are on, clear blink register if not
is31_read_register(0, 0x00, &temp); is31_read_register(0, 0x00, &temp);
start = (temp>0 || BACKLIGHT_OFF_LOCK_LED_OFF) ? 1 : 0; led_addr += temp == 0 ? 0 : 0x12;//send bit to blink register instead
start = BACKLIGHT_OFF_LOCK_LED_OFF ? 1 : 0;
for(page=start; page<8; page++) { for(page=start; page<8; page++) {
set_led_bit(page,led_control_write,led_addr,led_on); set_led_bit(page,led_control_word,led_addr,led_on);
is31_write_data(page, led_control_write, 0x02); is31_write_data(page, led_control_word, 0x02);
} }
} }
void write_led_page (uint8_t page, const uint8_t *user_led_array, uint8_t led_count) { void write_led_page (uint8_t page, uint8_t *user_led_array, uint8_t led_count) {
uint8_t i; uint8_t i;
uint8_t row, col; uint8_t row, col;
uint8_t led_control_register[0x13] = {0};//led control register start address + 0x12 bytes uint8_t led_control_register[0x13] = {0};//led control register start address + 0x12 bytes
@ -516,7 +543,6 @@ void led_controller_init(void) {
//set Display Option Register so all pwm intensity is controlled from Frame 0 //set Display Option Register so all pwm intensity is controlled from Frame 0
is31_write_register(IS31_FUNCTIONREG, IS31_REG_DISPLAYOPT, IS31_REG_DISPLAYOPT_INTENSITY_SAME); is31_write_register(IS31_FUNCTIONREG, IS31_REG_DISPLAYOPT, IS31_REG_DISPLAYOPT_INTENSITY_SAME);
//TODO: test new init pwm loop
/* set full pwm on Frame 1 */ /* set full pwm on Frame 1 */
pwm_register_array[0] = 0; pwm_register_array[0] = 0;
__builtin_memset(pwm_register_array+1, 0xFF, 8); __builtin_memset(pwm_register_array+1, 0xFF, 8);

View File

@ -94,7 +94,7 @@ extern mailbox_t led_mailbox;
void set_led_bit (uint8_t page, uint8_t *led_control_reg, uint8_t led_addr, uint8_t action); void set_led_bit (uint8_t page, uint8_t *led_control_reg, uint8_t led_addr, uint8_t action);
void set_lock_leds (uint8_t lock_type, uint8_t led_on); void set_lock_leds (uint8_t lock_type, uint8_t led_on);
void write_led_page (uint8_t page, const uint8_t *led_array, uint8_t led_count); void write_led_page (uint8_t page, uint8_t *led_array, uint8_t led_count);
// constants for signaling the LED controller thread // constants for signaling the LED controller thread
enum led_msg_t { enum led_msg_t {
@ -104,7 +104,8 @@ enum led_msg_t {
TOGGLE_LED, TOGGLE_LED,
TOGGLE_ALL, TOGGLE_ALL,
TOGGLE_BACKLIGHT, TOGGLE_BACKLIGHT,
TOGGLE_PAGE_LEDS, DISPLAY_PAGE,
RESET_PAGE,
TOGGLE_NUM_LOCK, TOGGLE_NUM_LOCK,
TOGGLE_CAPS_LOCK, TOGGLE_CAPS_LOCK,
MODE_BREATH, MODE_BREATH,