1
0
Fork 0
qmk_firmware/tool/mbed/mbed-sdk/libraries/tests/peripherals/ADXL345/ADXL345.cpp

406 lines
7.9 KiB
C++
Raw Normal View History

/**
* @author Aaron Berk
*
* @section LICENSE
*
* Copyright (c) 2010 ARM Limited
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* @section DESCRIPTION
*
* ADXL345, triple axis, digital interface, accelerometer.
*
* Datasheet:
*
* http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf
*/
/**
* Includes
*/
#include "ADXL345.h"
ADXL345::ADXL345(PinName mosi,
PinName miso,
PinName sck,
PinName cs) : spi_(mosi, miso, sck), nCS_(cs) {
//2MHz, allowing us to use the fastest data rates.
spi_.frequency(2000000);
spi_.format(8,3);
nCS_ = 1;
wait_us(500);
}
int ADXL345::getDevId(void) {
return oneByteRead(ADXL345_DEVID_REG);
}
int ADXL345::getTapThreshold(void) {
return oneByteRead(ADXL345_THRESH_TAP_REG);
}
void ADXL345::setTapThreshold(int threshold) {
oneByteWrite(ADXL345_THRESH_TAP_REG, threshold);
}
int ADXL345::getOffset(int axis) {
int address = 0;
if (axis == ADXL345_X) {
address = ADXL345_OFSX_REG;
} else if (axis == ADXL345_Y) {
address = ADXL345_OFSY_REG;
} else if (axis == ADXL345_Z) {
address = ADXL345_OFSZ_REG;
}
return oneByteRead(address);
}
void ADXL345::setOffset(int axis, char offset) {
int address = 0;
if (axis == ADXL345_X) {
address = ADXL345_OFSX_REG;
} else if (axis == ADXL345_Y) {
address = ADXL345_OFSY_REG;
} else if (axis == ADXL345_Z) {
address = ADXL345_OFSZ_REG;
}
return oneByteWrite(address, offset);
}
int ADXL345::getTapDuration(void) {
return oneByteRead(ADXL345_DUR_REG)*625;
}
void ADXL345::setTapDuration(int duration_us) {
int tapDuration = duration_us / 625;
oneByteWrite(ADXL345_DUR_REG, tapDuration);
}
float ADXL345::getTapLatency(void) {
return oneByteRead(ADXL345_LATENT_REG)*1.25;
}
void ADXL345::setTapLatency(int latency_ms) {
int tapLatency = latency_ms / 1.25;
oneByteWrite(ADXL345_LATENT_REG, tapLatency);
}
float ADXL345::getWindowTime(void) {
return oneByteRead(ADXL345_WINDOW_REG)*1.25;
}
void ADXL345::setWindowTime(int window_ms) {
int windowTime = window_ms / 1.25;
oneByteWrite(ADXL345_WINDOW_REG, windowTime);
}
int ADXL345::getActivityThreshold(void) {
return oneByteRead(ADXL345_THRESH_ACT_REG);
}
void ADXL345::setActivityThreshold(int threshold) {
oneByteWrite(ADXL345_THRESH_ACT_REG, threshold);
}
int ADXL345::getInactivityThreshold(void) {
return oneByteRead(ADXL345_THRESH_INACT_REG);
}
void ADXL345::setInactivityThreshold(int threshold) {
return oneByteWrite(ADXL345_THRESH_INACT_REG, threshold);
}
int ADXL345::getTimeInactivity(void) {
return oneByteRead(ADXL345_TIME_INACT_REG);
}
void ADXL345::setTimeInactivity(int timeInactivity) {
oneByteWrite(ADXL345_TIME_INACT_REG, timeInactivity);
}
int ADXL345::getActivityInactivityControl(void) {
return oneByteRead(ADXL345_ACT_INACT_CTL_REG);
}
void ADXL345::setActivityInactivityControl(int settings) {
oneByteWrite(ADXL345_ACT_INACT_CTL_REG, settings);
}
int ADXL345::getFreefallThreshold(void) {
return oneByteRead(ADXL345_THRESH_FF_REG);
}
void ADXL345::setFreefallThreshold(int threshold) {
oneByteWrite(ADXL345_THRESH_FF_REG, threshold);
}
int ADXL345::getFreefallTime(void) {
return oneByteRead(ADXL345_TIME_FF_REG)*5;
}
void ADXL345::setFreefallTime(int freefallTime_ms) {
int freefallTime = freefallTime_ms / 5;
oneByteWrite(ADXL345_TIME_FF_REG, freefallTime);
}
int ADXL345::getTapAxisControl(void) {
return oneByteRead(ADXL345_TAP_AXES_REG);
}
void ADXL345::setTapAxisControl(int settings) {
oneByteWrite(ADXL345_TAP_AXES_REG, settings);
}
int ADXL345::getTapSource(void) {
return oneByteRead(ADXL345_ACT_TAP_STATUS_REG);
}
void ADXL345::setPowerMode(char mode) {
//Get the current register contents, so we don't clobber the rate value.
char registerContents = oneByteRead(ADXL345_BW_RATE_REG);
registerContents = (mode << 4) | registerContents;
oneByteWrite(ADXL345_BW_RATE_REG, registerContents);
}
int ADXL345::getPowerControl(void) {
return oneByteRead(ADXL345_POWER_CTL_REG);
}
void ADXL345::setPowerControl(int settings) {
oneByteWrite(ADXL345_POWER_CTL_REG, settings);
}
int ADXL345::getInterruptEnableControl(void) {
return oneByteRead(ADXL345_INT_ENABLE_REG);
}
void ADXL345::setInterruptEnableControl(int settings) {
oneByteWrite(ADXL345_INT_ENABLE_REG, settings);
}
int ADXL345::getInterruptMappingControl(void) {
return oneByteRead(ADXL345_INT_MAP_REG);
}
void ADXL345::setInterruptMappingControl(int settings) {
oneByteWrite(ADXL345_INT_MAP_REG, settings);
}
int ADXL345::getInterruptSource(void){
return oneByteRead(ADXL345_INT_SOURCE_REG);
}
int ADXL345::getDataFormatControl(void){
return oneByteRead(ADXL345_DATA_FORMAT_REG);
}
void ADXL345::setDataFormatControl(int settings){
oneByteWrite(ADXL345_DATA_FORMAT_REG, settings);
}
void ADXL345::setDataRate(int rate) {
//Get the current register contents, so we don't clobber the power bit.
char registerContents = oneByteRead(ADXL345_BW_RATE_REG);
registerContents &= 0x10;
registerContents |= rate;
oneByteWrite(ADXL345_BW_RATE_REG, registerContents);
}
void ADXL345::getOutput(int* readings){
char buffer[6];
multiByteRead(ADXL345_DATAX0_REG, buffer, 6);
readings[0] = (int)buffer[1] << 8 | (int)buffer[0];
readings[1] = (int)buffer[3] << 8 | (int)buffer[2];
readings[2] = (int)buffer[5] << 8 | (int)buffer[4];
}
int ADXL345::getFifoControl(void){
return oneByteRead(ADXL345_FIFO_CTL);
}
void ADXL345::setFifoControl(int settings){
oneByteWrite(ADXL345_FIFO_STATUS, settings);
}
int ADXL345::getFifoStatus(void){
return oneByteRead(ADXL345_FIFO_STATUS);
}
int ADXL345::oneByteRead(int address) {
int tx = (ADXL345_SPI_READ | (address & 0x3F));
int rx = 0;
nCS_ = 0;
//Send address to read from.
spi_.write(tx);
//Read back contents of address.
rx = spi_.write(0x00);
nCS_ = 1;
return rx;
}
void ADXL345::oneByteWrite(int address, char data) {
int tx = (ADXL345_SPI_WRITE | (address & 0x3F));
nCS_ = 0;
//Send address to write to.
spi_.write(tx);
//Send data to be written.
spi_.write(data);
nCS_ = 1;
}
void ADXL345::multiByteRead(int startAddress, char* buffer, int size) {
int tx = (ADXL345_SPI_READ | ADXL345_MULTI_BYTE | (startAddress & 0x3F));
nCS_ = 0;
//Send address to start reading from.
spi_.write(tx);
for (int i = 0; i < size; i++) {
buffer[i] = spi_.write(0x00);
}
nCS_ = 1;
}
void ADXL345::multiByteWrite(int startAddress, char* buffer, int size) {
int tx = (ADXL345_SPI_WRITE | ADXL345_MULTI_BYTE | (startAddress & 0x3F));
nCS_ = 0;
//Send address to start reading from.
spi_.write(tx);
for (int i = 0; i < size; i++) {
buffer[i] = spi_.write(0x00);
}
nCS_ = 1;
}